Reduced differential transform method for solving (1+n) – Dimensional Burgers' equation
نویسندگان
چکیده
منابع مشابه
Differential Transform Method to two-dimensional non-linear wave equation
In this paper, an analytic solution is presented using differential transform method (DTM) for a class of wave equation. The emphasis is on the nonlinear two-dimensional wave equation. The procedures introduced in this paper are in recursive forms which can be used to obtain the closed form of the solutions, if they are required. The method is tested on various examples, and the results reveal ...
متن کاملReproducing Kernel Space Hilbert Method for Solving Generalized Burgers Equation
In this paper, we present a new method for solving Reproducing Kernel Space (RKS) theory, and iterative algorithm for solving Generalized Burgers Equation (GBE) is presented. The analytical solution is shown in a series in a RKS, and the approximate solution u(x,t) is constructed by truncating the series. The convergence of u(x,t) to the analytical solution is also proved.
متن کاملThe Laplace transform method for Burgers’ equation
The Laplace transform method (LTM) is introduced to solve Burgers’ equation. Because of the nonlinear term in Burgers’ equation, one cannot directly apply the LTM. Increment linearization technique is introduced to deal with the situation. This is a key idea in this paper. The increment linearization technique is the following: In time level t , we divide the solution u(x, t) into two parts: u(...
متن کاملreduced differential transform method for solving linear and nonlinear wave equations
reduced differential transform method (rdtm) is applied to various wave equations. to assessthe accuracy of the solutions, we compare the results with the exact solutions and variational iteration method.the results reveal that the rdtm is very effective, convenient and quite accurate to systems of nonlinearequations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Egyptian Journal of Basic and Applied Sciences
سال: 2014
ISSN: 2314-808X
DOI: 10.1016/j.ejbas.2014.05.001